
Package: LncFinder (via r-universe)
August 28, 2024

Type Package

Title LncRNA Identification and Analysis Using Heterologous Features

Version 1.1.5

Maintainer Siyu HAN <hansy15@mails.jlu.edu.cn>

Acknowledgments CHENG Ming, FAN Linrui, GUO Yuan, LI Yaolong, SUN
Ying, WANG Ruoyu

Description Long non-coding RNAs identification and analysis. Default
models are trained with human, mouse and wheat datasets by
employing SVM. Features are based on intrinsic composition of
sequence, EIIP value (electron-ion interaction
pseudopotential), and secondary structure. This package can
also extract other classic features and build new classifiers.
Reference: Han SY., Liang YC., Li Y., et al. (2018)
<doi:10.1093/bib/bby065>.

URL https://bmbl.bmi.osumc.edu/lncfinder/

License GPL-3

Depends R (>= 2.10)

Imports seqinr (>= 2.1-3), e1071 (>= 1.0), parallel (>= 2.1.0), caret
(>= 6.0-71),

LazyData true

Encoding UTF-8

RoxygenNote 7.1.1

NeedsCompilation no

Author Siyu HAN [aut, cre], Ying LI [aut], Yanchun LIANG [aut]

Date/Publication 2021-12-09 17:00:02 UTC

Repository https://han-siyu.r-universe.dev

RemoteUrl https://github.com/cran/LncFinder

RemoteRef HEAD

RemoteSha 7130d6771912c8629772f71334f0f249e1f7c143

1

https://doi.org/10.1093/bib/bby065
https://bmbl.bmi.osumc.edu/lncfinder/

2 build_model

Contents
build_model . 2
compute_EIIP . 4
compute_EucDistance . 6
compute_FickettScore . 8
compute_GC . 10
compute_hexamerScore . 11
compute_kmer . 13
compute_LogDistance . 14
compute_pI . 16
demo_dataset . 18
demo_DNA.seq . 19
demo_SS.seq . 19
extract_features . 20
find_orfs . 22
lnc_finder . 23
make_frequencies . 25
make_referFreq . 28
read_SS . 30
run_RNAfold . 32
svm_cv . 34
svm_tune . 35

Index 38

build_model Build Users’ Own Model

Description

This function is used to build new models with users’ own data.

Usage

build_model(
lncRNA.seq,
mRNA.seq,
frequencies.file,
SS.features = FALSE,
lncRNA.format = "DNA",
mRNA.format = "DNA",
parallel.cores = 2,
folds.num = 10,
seed = 1,
gamma.range = (2^seq(-5, 0, 1)),
cost.range = c(1, 4, 8, 16, 24, 32),
...

)

build_model 3

Arguments

lncRNA.seq Long non-coding sequences. Can be a FASTA file loaded by seqinr-package
or secondary structure sequences file (Dot-Bracket Notation) obtained from func-
tion run_RNAfold. If lncRNA.seq is secondary structure sequences file, param-
eter lncRNA.format should be defined as "SS".

mRNA.seq mRNA sequences. FASTA file loaded by read.fasta or secondary structure
sequences (Dot-Bracket Notation) obtained from function run_RNAfold. If
mRNA.seq is secondary structure sequences file, parameter mRNA.format should
be defined as "SS".

frequencies.file

String or a list obtained from function make_frequencies. Input species name
"human", "mouse" or "wheat" to use pre-build frequencies files. Or assign
a users’ own frequencies file (Please refer to function make_frequencies for
more information).

SS.features Logical. If SS.features = TRUE, secondary structure features will be used to
build the model. In this case, lncRNA.seq and mRNA.seq should be secondary
structure sequences (Dot-Bracket Notation) obtained from function run_RNAfold
and parameter lncRNA.format and mRNA.format should be set as "SS".

lncRNA.format String. Define the format of lncRNA.seq. "DNA" for DNA sequences and
"SS" for secondary structure sequences. Only when both mRNA.format and
lncRNA.format are set as "SS", can the model with secondary structure fea-
tures be built (SS.features = TRUE).

mRNA.format String. Define the format of mRNA.seq. Can be "DNA" or "SS". "DNA" for DNA
sequences and "SS" for secondary structure sequences. When this parameter is
defined as "DNA", only the model without secondary structure features can be
built. In this case, parameter SS.features should be set as FALSE.

parallel.cores Integer. The number of cores for parallel computation. By default the number
of cores is 2, users can set as -1 to run this function with all cores. During
the process of svm tuning, if the number of parallel.cores is more than the
folds.num (number of the folds for cross-validation), the number of parallel.cores
will be set as folds.num automatically.

folds.num Integer. Specify the number of folds for cross-validation. (Default: 10)

seed Integer. Used to set the seed for cross-validation. (Default: 1)

gamma.range The range of gamma. (Default: 2 ^ seq(-5, 0, 1))

cost.range The range of cost. (Default: c(1, 4, 8, 16, 24, 32))

... Additional arguments passed to function svm_tune for customised SVM model
training.

Details

This function is used to build a new model with users’ own sequences. Users can use function
lnc_finder to predict the sequences with new models.

For the details of frequencies.file, please refer to function make_frequencies.

For the details of the features, please refer to function extract_features.

For the details of svm tuning, please refer to function svm_tune.

4 compute_EIIP

Value

Returns a svm model.

References

Siyu Han, Yanchun Liang, Qin Ma, Yangyi Xu, Yu Zhang, Wei Du, Cankun Wang & Ying Li.
LncFinder: an integrated platform for long non-coding RNA identification utilizing sequence intrin-
sic composition, structural information, and physicochemical property. Briefings in Bioinformatics,
2019, 20(6):2009-2027.

Author(s)

HAN Siyu

See Also

make_frequencies, lnc_finder, extract_features, svm_tune, svm.

Examples

Not run:
data(demo_DNA.seq)
Seqs <- demo_DNA.seq

Build the model with pre-build frequencies.file:
my_model <- build_model(lncRNA.seq = Seqs[1:5], mRNA.seq = Seqs[6:10],

frequencies.file = "human", SS.features = FALSE,
lncRNA.format = "DNA", mRNA.format = "DNA",
parallel.cores = 2, folds.num = 2, seed = 1,
gamma.range = (2 ^ seq(-5, -1, 2)),
cost.range = c(2, 6, 12, 20))

Users can use default values of gamma.range and cost.range to find the
best parameters.
Use your own frequencies file by assigning frequencies list to parameter
"frequencies.file".

End(Not run)

compute_EIIP Extract the EIIP-derived features

Description

This function can extract EIIP-derived features proposed by Han et al (2018).

compute_EIIP 5

Usage

compute_EIIP(
Sequences,
label = NULL,
spectrum.percent = 0.1,
quantile.probs = seq(0, 1, 0.25)

)

Arguments

Sequences A FASTA file loaded by function read.fasta of seqinr-package.

label Optional. String. Indicate the label of the sequences such as "NonCoding",
"Coding".

spectrum.percent

Numeric specifying the percentage of the sorted power spectrum that be used
to calculate the quantile-based features. For example, if spectrum.percent =
0.1, the top 10% percent of the sorted power spectrum will be used to compute
the quantiles.

quantile.probs Numeric. The probabilities with values in [0,1].

Details

The function compute_EIIP can extract EIIP (electron-ion interaction pseudo-potential) features in-
cluding: signal at 1/3 position (Signal.Peak), average power (Average.Power), signal to noise ra-
tio (SNR), and quantile-based features of one specified percentage of the sorted power spectrum (e.g.
0%, 20%, 40%, 60%, 70%, 100% when quantile.probs = seq(0, 1, 0.2) and spectrum.percent =
0.1).

In method LncFinder, EIIP features includes Signal.Peak, SNR, 0% (Signal.Min), 25% (Singal.Q1,
50% Signal.Q2), and 75% (Signal.Max) of the top 10% sorted power spectrum, i.e. quantile.prob
= seq(0, 1, 0.25) and spectrum.percent = 0.1.

Value

A dataframe including the EIIP-derived features.

References

Siyu Han, Yanchun Liang, Qin Ma, Yangyi Xu, Yu Zhang, Wei Du, Cankun Wang & Ying Li.
LncFinder: an integrated platform for long non-coding RNA identification utilizing sequence intrin-
sic composition, structural information, and physicochemical property. Briefings in Bioinformatics,
2019, 20(6):2009-2027.

Lalović, Dragutin, and Veljko Veljković. The global average DNA base composition of coding
regions may be determined by the electron-ion interaction potential. Biosystems, 1990, 23(4):311-
316.

Achuthsankar S Nair & Sivarama Pillai Sreenadhan. A coding measure scheme employing electron-
ion interaction pseudopotential (EIIP). Bioinformation, 2006, 1(6):197-202.

6 compute_EucDistance

Author(s)

HAN Siyu

See Also

extract_features

Examples

data(demo_DNA.seq)
Seqs <- demo_DNA.seq

EIIP_res <- compute_EIIP(Seqs, label = "NonCoding", spectrum.percent = 0.25,
quantile.probs = seq(0, 1, 0.25))

compute_EucDistance Compute Euclidean Distance

Description

This function can compute Euclidean Distance proposed by method LncFinder (Han et al. 2018).
Euclidean Distance can be calculated on full sequence or the longest ORF region. The step and k of
the sliding window can also be customized.

Usage

compute_EucDistance(
Sequences,
label = NULL,
referFreq,
k = 6,
step = 1,
alphabet = c("a", "c", "g", "t"),
on.ORF = FALSE,
auto.full = FALSE,
parallel.cores = 2

)

Arguments

Sequences A FASTA file loaded by function read.fasta of seqinr-package.

label Optional. String. Indicate the label of the sequences such as "NonCoding",
"Coding".

referFreq a list obtained from function make_referFreq.

k An integer that indicates the sliding window size. (Default: 6)

compute_EucDistance 7

step Integer defaulting to 1 for the window step.

alphabet A vector of single characters that specify the different character of the sequence.
(Default: alphabet = c("a", "c", "g", "t"))

on.ORF Logical. If TRUE, Euclidean Distance will be calculated on the longest ORF
region. NOTE: If TRUE, the input has to be DNA sequences. (Default: FALSE)

auto.full Logical. When on.ORF = TRUE but no ORF can be found, if auto.full = TRUE,
Euclidean Distance will be calculated on full sequences automatically; if auto.full
is FALSE, the sequences that have no ORF will be discarded. Ignored when
on.ORF = FALSE. (Default: FALSE)

parallel.cores Integer. The number of cores for parallel computation. By default the number
of cores is 2. Users can set as -1 to run this function with all cores.

Details

This function can compute Euclidean Distance proposed by LncFinder (HAN et al. 2018). In
LncFinder, two schemes are provided to calculate Euclidean Distance: 1) step = 3 and k = 6 on the
longest ORF region; 2) step = 1 and k = 6 on full sequence. Using this function compute_EucDistance,
both step, k, and calculated region (full sequence or ORF) can be customized to maximize its avail-
ability.

Value

A dataframe.

References

Siyu Han, Yanchun Liang, Qin Ma, Yangyi Xu, Yu Zhang, Wei Du, Cankun Wang & Ying Li.
LncFinder: an integrated platform for long non-coding RNA identification utilizing sequence intrin-
sic composition, structural information, and physicochemical property. Briefings in Bioinformatics,
2019, 20(6):2009-2027.

Author(s)

HAN Siyu

See Also

make_referFreq, compute_LogDistance, compute_hexamerScore.

Examples

Not run:
Seqs <- seqinr::read.fasta(file =
"http://www.ncbi.nlm.nih.gov/WebSub/html/help/sample_files/nucleotide-sample.txt")

referFreq <- make_referFreq(cds.seq = Seqs, lncRNA.seq = Seqs, k = 6, step = 3,
alphabet = c("a", "c", "g", "t"), on.orf = TRUE,
ignore.illegal = TRUE)

8 compute_FickettScore

data(demo_DNA.seq)
Sequences <- demo_DNA.seq

EucDistance <- compute_EucDistance(Sequences, label = "NonCoding", referFreq = referFreq,
k = 6, step = 3, alphabet = c("a", "c", "g", "t"),
on.ORF = TRUE, auto.full = TRUE, parallel.cores = 2)

End(Not run)

compute_FickettScore Compute Fickett TESTCODE Score

Description

This function can compute Fickett TESTCODE score of DNA sequences proposed by James W.Fickett
(Fickett JW. 1982). Fickett TESTCODE score can be calculated on full sequence or the longest ORF
region.

Usage

compute_FickettScore(
Sequences,
label = NULL,
on.ORF = FALSE,
auto.full = FALSE,
parallel.cores = 2

)

Arguments

Sequences A FASTA file loaded by function read.fasta of seqinr-package.

label Optional. String. Indicate the label of the sequences such as "NonCoding",
"Coding".

on.ORF Logical. If TRUE, Fickett TESTCODE score will be calculated on the longest
ORF region.

auto.full Logical. When on.ORF = TRUE but no ORF can be found, if auto.full = TRUE,
Fickett TESTCODE score will be calculated on full sequences automatically; if
auto.full is FALSE, the sequences that have no ORF will be discarded. Ignored
when on.ORF = FALSE. (Default: FALSE)

parallel.cores Integer. The number of cores for parallel computation. By default the number
of cores is 2. Users can set as -1 to run this function with all cores.

compute_FickettScore 9

Details

This function can compute Fickett TESTCODE score proposed by James W.Fickett (Fickett JW.
1982). Fickett TESTCODE score is selected as feature by method CPAT (Wang et al. 2013) and
CPC2 (Kang et al. 2017). In CPAT, Fickett TESTCODE score is calculated on the longest ORF
region, but CPC2 calculates the score on full sequence. This function compute_FickettScore
improves the CPAT’s code and is capable of computing the score on the longest ORF region as well
as full sequence.

Value

A dataframe.

References

James W.Fickett. Recognition of protein coding regions in DNA sequences. Nucleic Acids Re-
search, 1982, 10(17):5303-5318.

Siyu Han, Yanchun Liang, Qin Ma, Yangyi Xu, Yu Zhang, Wei Du, Cankun Wang & Ying Li.
LncFinder: an integrated platform for long non-coding RNA identification utilizing sequence intrin-
sic composition, structural information, and physicochemical property. Briefings in Bioinformatics,
2019, 20(6):2009-2027.

Liguo Wang, Hyun Jung Park, Surendra Dasari, Shengqin Wang, JeanPierre Kocher & Wei Li.
CPAT: coding-potential assessment tool using an alignment-free logistic regression model. Nucleic
Acids Research, 2013, 41(6):e74-e74.

Yu-Jian Kang, De-Chang Yang, Lei Kong, Mei Hou, Yu-Qi Meng, Liping Wei & Ge Gao. CPC2:
a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids
Research, 2017, 45(W1):W12-W16.

Author(s)

HAN Siyu

Examples

Not run:
data(demo_DNA.seq)
Seqs <- demo_DNA.seq

FickettScore <- compute_FickettScore(Seqs, label = NULL, on.ORF = TRUE,
auto.full = TRUE, parallel.cores = 2)

End(Not run)

10 compute_GC

compute_GC Calculate GC content

Description

This function can GC content of the input sequences.

Usage

compute_GC(
Sequences,
label = NULL,
on.ORF = FALSE,
auto.full = FALSE,
parallel.cores = 2

)

Arguments

Sequences A FASTA file loaded by function read.fasta of seqinr-package.

label Optional. String. Indicate the label of the sequences such as "NonCoding",
"Coding".

on.ORF Logical. If TRUE, GC content will be calculated on the longest ORF region.

auto.full Logical. When on.ORF = TRUE but no ORF can be found, if auto.full = TRUE,
GC content will be calculated on full sequences automatically; if auto.full is
FALSE, the sequences that have no ORF will be discarded. Ignored when on.ORF
= FALSE. (Default: FALSE)

parallel.cores Integer. The number of cores for parallel computation. By default the number
of cores is 2. Users can set as -1 to run this function with all cores.

Details

This function can basically compute GC content of DNA sequences: GC content = (nc + ng) / (na
+ nc + ng + nt). The function will ignored the ambiguous bases.

Value

A dataframe.

Author(s)

HAN Siyu

See Also

GC (package "seqinr-package")

compute_hexamerScore 11

Examples

Not run:
data(demo_DNA.seq)
Seqs <- demo_DNA.seq

gcContent <- compute_GC(Seqs, label = "NonCoding",on.ORF = TRUE,
auto.full = TRUE, parallel.cores = 2)

End(Not run)

compute_hexamerScore Compute Hexamer Score

Description

This function can compute hexamer score proposed by method CPAT (Wang et al. 2013). Hexamer
score can be calculated on full sequence or the longest ORF region. The step and k of the sliding
window can also be customized.

Usage

compute_hexamerScore(
Sequences,
label = NULL,
referFreq,
k = 6,
step = 1,
alphabet = c("a", "c", "g", "t"),
on.ORF = FALSE,
auto.full = FALSE,
parallel.cores = 2

)

Arguments

Sequences A FASTA file loaded by function read.fasta of seqinr-package.

label Optional. String. Indicate the label of the sequences such as "NonCoding",
"Coding".

referFreq A list obtained from function make_referFreq.

k An integer that indicates the sliding window size. (Default: 6)

step Integer defaulting to 1 for the window step.

alphabet A vector of single characters that specify the different character of the sequence.
(Default: alphabet = c("a", "c", "g", "t"))

on.ORF Logical. If TRUE, hexamer score will be calculated on the longest ORF region.
NOTE: If TRUE, the input has to be DNA sequences. (Default: FALSE)

12 compute_hexamerScore

auto.full Logical. When on.ORF = TRUE but no ORF can be found, if auto.full = TRUE,
hexamer score will be calculated on full sequences automatically; if auto.full
is FALSE, the sequences that have no ORF will be discarded. Ignored when
on.ORF = FALSE. (Default: FALSE)

parallel.cores Integer. The number of cores for parallel computation. By default the number
of cores is 2. Users can set as -1 to run this function with all cores.

Details

This function can compute hexamer score proposed by CPAT (Wang et al. 2013). In CPAT, hexamer
score is calculated on the longest ORF region, and the step of the sliding window is 3 (i.e. step
= 3). Hexamer means six adjoining bases, thus k = 6. But in function compute_hexamerScore,
both step, k, and calculated region (full sequence or ORF) can be customized to maximize its
availability.

Value

A dataframe.

References

Liguo Wang, Hyun Jung Park, Surendra Dasari, Shengqin Wang, JeanPierre Kocher, & Wei Li.
CPAT: coding-potential assessment tool using an alignment-free logistic regression model. Nucleic
Acids Research, 2013, 41(6):e74-e74.

Siyu Han, Yanchun Liang, Qin Ma, Yangyi Xu, Yu Zhang, Wei Du, Cankun Wang & Ying Li.
LncFinder: an integrated platform for long non-coding RNA identification utilizing sequence intrin-
sic composition, structural information, and physicochemical property. Briefings in Bioinformatics,
2019, 20(6):2009-2027.

Author(s)

HAN Siyu

See Also

make_referFreq, compute_LogDistance, compute_EucDistance.

Examples

Not run:
Seqs <- seqinr::read.fasta(file =
"http://www.ncbi.nlm.nih.gov/WebSub/html/help/sample_files/nucleotide-sample.txt")

referFreq <- make_referFreq(cds.seq = Seqs, lncRNA.seq = Seqs, k = 6, step = 1,
alphabet = c("a", "c", "g", "t"), on.orf = TRUE,
ignore.illegal = TRUE)

data(demo_DNA.seq)
Sequences <- demo_DNA.seq

compute_kmer 13

hexamerScore <- compute_hexamerScore(Sequences, label = "NonCoding", referFreq = referFreq,
k = 6, step = 1, alphabet = c("a", "c", "g", "t"),
on.ORF = TRUE, auto.full = TRUE, parallel.cores = 2)

End(Not run)

compute_kmer Compute k-mer Features

Description

This function can calculate the k-mer frequencies of the sequences.

Usage

compute_kmer(
Sequences,
label = NULL,
k = 1:5,
step = 1,
freq = TRUE,
improved.mode = FALSE,
alphabet = c("a", "c", "g", "t"),
on.ORF = FALSE,
auto.full = FALSE,
parallel.cores = 2

)

Arguments

Sequences A FASTA file loaded by function read.fasta of seqinr-package.

label Optional. String. Indicate the label of the sequences such as "NonCoding",
"Coding".

k An integer that indicates the sliding window size. (Default: 1:5)

step Integer defaulting to 1 for the window step.

freq Logical. If TRUE, the frequencies of different patterns are returned instead of
counts. (Default: TRUE)

improved.mode Logical. If TRUE, the frequencies will be normalized using the method pro-
posed by PLEK (Li et al. 2014). Ignored if freq = FALSE. (Default: FALSE)

alphabet A vector of single characters that specify the different character of the sequence.
(Default: alphabet = c("a", "c", "g", "t"))

on.ORF Logical. If TRUE, the k-mer frequencies will be calculated on the longest ORF
region. NOTE: If TRUE, the sequences have to be DNA. (Default: FALSE)

14 compute_LogDistance

auto.full Logical. When on.ORF = TRUE but no ORF can be found, if auto.full = TRUE,
the k-mer frequencies will be calculated on the full sequence automatically; if
auto.full is FALSE, the sequences that have no ORF will be discarded. Ignored
when on.ORF = FALSE. (Default: FALSE)

parallel.cores Integer. The number of cores for parallel computation. By default the number
of cores is 2. Users can set as -1 to run this function with all cores.

Details

This function can extract k-mer features. k and step can be customized. The count (freq = FALSE)
or frequencies (freq = TRUE) of different patterns can be returned. If freq = TRUE, improved.mode
is available. The improved mode is proposed by method PLEK. (Ref: Li et al. 2014)

Value

A dataframe.

Author(s)

HAN Siyu

Examples

Not run:
data(demo_DNA.seq)
Seqs <- demo_DNA.seq

kmer_res1 <- compute_kmer(Seqs, k = 1:5, step = 1, freq = TRUE, improved.mode = FALSE)

kmer_res2 <- compute_kmer(Seqs, k = 1:5, step = 3, freq = TRUE,
improved.mode = TRUE, on.ORF = TRUE, auto.full = TRUE)

End(Not run)

compute_LogDistance Compute Logarithm Distance

Description

This function can compute Logarithm Distance proposed by method LncFinder (Han et al. 2018).
Logarithm Distance can be calculated on full sequence or the longest ORF region. The step and k
of the sliding window can also be customized.

compute_LogDistance 15

Usage

compute_LogDistance(
Sequences,
label = NULL,
referFreq,
k = 6,
step = 1,
alphabet = c("a", "c", "g", "t"),
on.ORF = FALSE,
auto.full = FALSE,
parallel.cores = 2

)

Arguments

Sequences A FASTA file loaded by function read.fasta of seqinr-package.

label Optional. String. Indicate the label of the sequences such as "NonCoding",
"Coding".

referFreq a list obtained from function make_referFreq.

k An integer that indicates the sliding window size. (Default: 6)

step Integer defaulting to 1 for the window step.

alphabet A vector of single characters that specify the different character of the sequence.
(Default: alphabet = c("a", "c", "g", "t"))

on.ORF Logical. If TRUE, Logarithm Distance will be calculated on the longest ORF
region. NOTE: If TRUE, the input has to be DNA sequences. (Default: FALSE)

auto.full Logical. When on.ORF = TRUE but no ORF can be found, if auto.full = TRUE,
Logarithm Distance will be calculated on full sequences automatically; if auto.full
is FALSE, the sequences that have no ORF will be discarded. Ignored when
on.ORF = FALSE. (Default: FALSE)

parallel.cores Integer. The number of cores for parallel computation. By default the number
of cores is 2. Users can set as -1 to run this function with all cores.

Details

This function can compute Logarithm Distance proposed by LncFinder (HAN et al. 2018). In
LncFinder, two schemes are provided to calculate Logarithm Distance: 1) step = 3 and k = 6 on
the longest ORF region; 2) step = 1 and k = 6 on full sequence. Method LncFinder uses scheme 1
to extract Logarithm Distance features. Using this function compute_EucDistance, both step, k,
and calculated region (full sequence or ORF) can be customized to maximize its availability.

Value

A dataframe.

16 compute_pI

References

Siyu Han, Yanchun Liang, Qin Ma, Yangyi Xu, Yu Zhang, Wei Du, Cankun Wang & Ying Li.
LncFinder: an integrated platform for long non-coding RNA identification utilizing sequence intrin-
sic composition, structural information, and physicochemical property. Briefings in Bioinformatics,
2019, 20(6):2009-2027.

Author(s)

HAN Siyu

See Also

make_referFreq, compute_EucDistance, compute_hexamerScore.

Examples

Not run:
Seqs <- seqinr::read.fasta(file =
"http://www.ncbi.nlm.nih.gov/WebSub/html/help/sample_files/nucleotide-sample.txt")

referFreq <- make_referFreq(cds.seq = Seqs, lncRNA.seq = Seqs, k = 6, step = 3,
alphabet = c("a", "c", "g", "t"), on.orf = TRUE,
ignore.illegal = TRUE)

data(demo_DNA.seq)
Sequences <- demo_DNA.seq

LogDistance <- compute_LogDistance(Sequences, label = "NonCoding", referFreq = referFreq,
k = 6, step = 3, alphabet = c("a", "c", "g", "t"),
on.ORF = TRUE, auto.full = TRUE, parallel.cores = 2)

End(Not run)

compute_pI Compute Theoretical Isoelectric Point

Description

This function is basically a wrapper for function computePI. This function translate DNA sequence
into protein, and compute the theoretical isoelectric point (pI) of this protein.

Usage

compute_pI(
Sequences,
label = NULL,
on.ORF = FALSE,

compute_pI 17

auto.full = FALSE,
ambiguous.base = FALSE,
parallel.cores = 2

)

Arguments

Sequences A FASTA file loaded by function read.fasta of seqinr-package.

label Optional. String. Indicate the label of the sequences such as "NonCoding",
"Coding".

on.ORF Logical. If TRUE, pI will be calculated on the longest ORF region. NOTE: If
TRUE, the input has to be DNA sequences. (Default: FALSE)

auto.full Logical. When on.ORF = TRUE but no ORF can be found, if auto.full = TRUE,
pI will be calculated on full sequences automatically; if auto.full is FALSE, the
sequences that have no ORF will be discarded. Ignored when on.ORF = FALSE.
(Default: FALSE)

ambiguous.base If TRUE, ambiguous bases are taken into account when translating DNA se-
quences into proteins.

parallel.cores Integer. The number of cores for parallel computation. By default the number
of cores is 2. Users can set as -1 to run this function with all cores.

Details

This function can compute the pI of DNA sequences. Method CPC2 (Kang et al. 2017) uses this
feature to identify lncRNAs, and this feature is evaluated in the article LncFinder (Han et al. 2018).

Using this function, the theoretical pI can be computed on full sequence or the longest ORF region.
In CPC2, pI is calculated on ORF region.

Value

A dataframe.

Author(s)

HAN Siyu

Examples

Not run:
data(demo_DNA.seq)
Sequences <- demo_DNA.seq

pI_res <- compute_pI(Sequences, on.ORF = TRUE, auto.full = FALSE, ambiguous.base = FALSE)

End(Not run)

18 demo_dataset

demo_dataset A demo of dataset

Description

This dataset contains the features of 20 lncRNA sequences and 20 protein-coding sequences.

Usage

data(demo_dataset)

Format

A data frame with 40 rows and 20 variables:

Label the class of the sequences

ORF.Max.Len the length of the longest ORF

ORF.Max.Cov the coverage of the longest ORF

Seq.lnc.Dist Log-Distance.lncRNA

Seq.pct.Dist Log-Distance.protein-coding transcripts

Seq.Dist.Ratio Distance-Ratio.sequence

Signal.Peak Signal as 1/3 position

SNR Signal to noise ratio

Signal.Min the minimum value of the top 10% power spectrum

Signal.Q1 the quantile Q1 of the top 10% power spectrum

Signal.Q2 the quantile Q2 of the top 10% power spectrum

Signal.Max the maximum value of the top 10% power spectrum

Dot_lnc.dist Log-Distance.acguD.lncRNA

Dot_pct.dist Log-Distance.acguD.protein-coding transcripts

Dot_Dist.Ratio Distance-Ratio.acguD

SS.lnc.dist Log-Distance.acgu-ACGU.lncRNA

SS.pct.dist Log-Distance.acgu-ACGU.protein-coding transcripts

SS.Dist.Ratio Distance-Ratio.acgu-ACGU

MFE Minimum free energy

UP.PCT Percentage of Unpair-Pair

Source

Sequences are selected from GENCODE.

demo_DNA.seq 19

demo_DNA.seq A demo of DNA sequences

Description

This file contains 10 DNA sequences.

Usage

data(demo_DNA.seq)

Format

A list contains 10 DNA sequences.
The sequences are loaded by function read.fasta.

Source

DNA sequences are selected from GENCODE.

demo_SS.seq A demo of secondary structure sequences

Description

This file contains 10 SS (Secondary Structure) sequences.

Usage

data(demo_SS.seq)

Format

A data frame with 3 rows and 10 variables:
The first row is RNA sequence; the second row is Dot-Bracket Notation of secondary structure
sequences; the last row is minimum free energy (MFE).

Source

DNA sequences are selected from GENCODE. Secondary structure of each sequence is obtained
from program "RNAfold".

20 extract_features

extract_features Extract the Features

Description

This function can construct the dataset. This function is only used to extract the features, please use
function build_model to build new models.

Usage

extract_features(
Sequences,
label = NULL,
SS.features = FALSE,
format = "DNA",
frequencies.file = "human",
parallel.cores = 2

)

Arguments

Sequences mRNA sequences or long non-coding sequences. Can be a FASTA file loaded
by seqinr-package or secondary structure sequences (Dot-Bracket Notation)
obtained from function run_RNAfold. If Sequences are secondary structure
sequences file, parameter format should be defined as "SS".

label Optional. String. Indicate the label of the sequences such as "NonCoding",
"Coding".

SS.features Logical. If SS.features = TRUE, secondary structure features will be extracted.
In this case, Sequences should be secondary structure sequences (Dot-Bracket
Notation) obtained from function run_RNAfold and parameter format should
be set as "SS".

format String. Can be "DNA" or "SS". Define the format of Sequences. "DNA" for DNA
sequences and "SS" for secondary structure sequences. This parameter must be
set as "SS" when SS.features = TURE.

frequencies.file

String or a list obtained from function make_frequencies. Input species name
"human", "mouse" or "wheat" to use pre-build frequencies files. Or assign a
users’ own frequencies file (See function make_frequencies).

parallel.cores Integer. The number of cores for parallel computation. By default the number
of cores is 2. Users can set as -1 to run this function with all cores.

Details

This function extracts the features and constructs the dataset.

Considering that it is time consuming to obtain secondary structure sequences, users can build
the model only with features of sequence and EIIP (SS.features = FALSE). When SS.features =

extract_features 21

TRUE, Sequences should be secondary structure sequences (Dot-Bracket Notation) obtained from
function run_RNAfold and parameter format should be set as "SS".

Please note that:

Secondary structure features (SS.features) can improve the performance when the species of
unevaluated sequences is identical to the species of the sequences that used to build the model.

However, if users are trying to predict sequences with the model trained on other species, SS.features
as TRUE may lead to low accuracy.

Value

Returns a data.frame. 11 features when SS.features is FALSE, and 19 features when SS.features
is TRUE.

Features

1. Features based on sequence:

The length and coverage of the longest ORF (ORF.Max.Len and ORF.Max.Cov);

Log-Distance.lncRNA (Seq.lnc.Dist);

Log-Distance.protein-coding transcripts (Seq.pct.Dist);

Distance-Ratio.sequence (Seq.Dist.Ratio).

2. Features based on EIIP (electron-ion interaction pseudopotential) value:

Signal at 1/3 position (Signal.Peak);

Signal to noise ratio (SNR);

the minimum value of the top 10% power spectrum (Signal.Min);

the quantile Q1 and Q2 of the top 10% power spectrum (Singal.Q1 and Signal.Q2)

the maximum value of the top 10% power spectrum (Signal.Max).

3. Features based on secondary structure sequence:

Log-Distance.acguD.lncRNA (Dot_lnc.dist);

Log-Distance.acguD.protein-coding transcripts (Dot_pct.dist);

Distance-Ratio.acguD (Dot_Dist.Ratio);

Log-Distance.acgu-ACGU.lncRNA (SS.lnc.dist);

Log-Distance.acgu-ACGU.protein-coding transcripts (SS.pct.dist);

Distance-Ratio.acgu-ACGU (SS.Dist.Ratio);

Minimum free energy (MFE);

Percentage of Unpair-Pair (UP.PCT)

References

Siyu Han, Yanchun Liang, Qin Ma, Yangyi Xu, Yu Zhang, Wei Du, Cankun Wang & Ying Li.
LncFinder: an integrated platform for long non-coding RNA identification utilizing sequence intrin-
sic composition, structural information, and physicochemical property. Briefings in Bioinformatics,
2019, 20(6):2009-2027.

22 find_orfs

Author(s)

HAN Siyu

See Also

svm_tune, build_model, make_frequencies, run_RNAfold, read_SS.

Examples

Not run:
data(demo_DNA.seq)
Seqs <- demo_DNA.seq

Extract features with pre-build frequencies.file:
my_features <- extract_features(Seqs, label = "Class.of.the.Sequences",

SS.features = FALSE, format = "DNA",
frequencies.file = "mouse",
parallel.cores = 2)

Use your own frequencies file by assign frequencies list to parameter
"frequencies.file".

End(Not run)

find_orfs Find ORFs

Description

This function can find all the ORFs in one sequence.

Usage

find_orfs(OneSeq, reverse.strand = FALSE, max.only = TRUE)

Arguments

OneSeq Is one sequence. Can be a FASTA file read by package "seqinr" seqinr-package
or just a string.

reverse.strand Logical. Whether find ORF on the reverse strand. Default: FALSE

max.only Logical. If TRUE, only the longest ORF will be returned. Default: TRUE

Details

This function can extract ORFs of one sequence. It returns ORF region, length and coverage of
the longest ORF when max.only = TRUE or ORF region, start position, end position, length and
coverage of all the ORFs when max.only = FALSE. Coverage is the the ratio of the ORF to transcript
length. If reverse.strand = TRUE, ORF will also be found on reverse strand.

lnc_finder 23

Value

If max.only = TRUE, the function returns a list which consists the ORF region (ORF.Max.Seq),
length (ORF.Max.Len) and coverage (ORF.Max.Cov) of the longest ORF. If max.only = FALSE, the
function returns a dataframe which consists all the ORF sequences.

Author(s)

HAN Siyu

Examples

For one sequence:
OneSeq <- c("cccatgcccagctagtaagcttagcc")
orf.info_1 <- find_orfs(OneSeq, reverse.strand = TRUE, max.only = FALSE)

For a FASTA file contains several sequences:
Not run:
Use "read.fasta" function of package "seqinr" to read a FASTA file:
Seqs <- seqinr::read.fasta(file =
"http://www.ncbi.nlm.nih.gov/WebSub/html/help/sample_files/nucleotide-sample.txt")

End(Not run)

Or just try to use our data "demo_DNA.seq"
data(demo_DNA.seq)
Seqs <- demo_DNA.seq

Use apply function to find the longest ORF:
orf.info_2 <- sapply(Seqs, find_orfs, reverse.strand = FALSE, max.only = FALSE)

lnc_finder Long Non-coding RNA Identification

Description

This function is used to predict sequences are non-coding transcripts or protein-coding transcripts.

Usage

lnc_finder(
Sequences,
SS.features = FALSE,
format = "DNA",
frequencies.file = "human",
svm.model = "human",
parallel.cores = 2

)

24 lnc_finder

Arguments

Sequences Unevaluated sequences. Can be a FASTA file loaded by seqinr-package or
secondary structure sequences (Dot-Bracket Notation) obtained from function
run_RNAfold. If Sequences is secondary structure sequences file, parameter
format should be defined as "SS".

SS.features Logical. If SS.features = TRUE, secondary structure features will be used.

format String. Define the format of the Sequences. Can be "DNA" or "SS". "DNA" for
DNA sequences and "SS" for secondary structure sequences.

frequencies.file

String or a list obtained from function make_frequencies. Input species name
"human", "mouse" or "wheat" to use pre-build frequencies files. Or assign a
users’ own frequencies file (See function make_frequencies).

svm.model String or a svm model obtained from function build_model or svm_tune. Input
species name "human", "mouse" or "wheat" to use pre-build models. Or assign
a users’ own model (See function build_model).

parallel.cores Integer. The number of cores for parallel computation. By default the number
of cores is 2. Users can set as -1 to run this function with all cores.

Details

Considering that it is time consuming to obtain secondary structure sequences, users can input nu-
cleotide sequences and predict these sequences without secondary structure features (Set SS.features
as FALSE).

Please note that:

SS.features can improve the performance when the species of unevaluated sequences is identical
to the species of the sequences that used to build the model.

However, if users are trying to predict sequences with the model trained on other species, SS.features
may lead to low accuracy.

For the details of frequencies.file, please refer to function make_frequencies.

For the details of the features, please refer to function extract_features.

Value

Returns a data.frame. Including the results of prediction (Pred); coding potential (Coding.Potential)
and the features. For the details of the features, please refer to function extract_features.

References

Siyu Han, Yanchun Liang, Qin Ma, Yangyi Xu, Yu Zhang, Wei Du, Cankun Wang & Ying Li.
LncFinder: an integrated platform for long non-coding RNA identification utilizing sequence intrin-
sic composition, structural information, and physicochemical property. Briefings in Bioinformatics,
2019, 20(6):2009-2027.

Author(s)

HAN Siyu

make_frequencies 25

See Also

build_model, make_frequencies, extract_features, run_RNAfold, read_SS.

Examples

Not run:
data(demo_DNA.seq)
Seqs <- demo_DNA.seq

Input one sequence:
OneSeq <- Seqs[1]
result_1 <- lnc_finder(OneSeq, SS.features = FALSE, format = "DNA",

frequencies.file = "human", svm.model = "human",
parallel.cores = 2)

Or several sequences:
data(demo_SS.seq)
Seqs <- demo_SS.seq
result_2 <- lnc_finder(Seqs, SS.features = TRUE, format = "SS",

frequencies.file = "mouse", svm.model = "mouse",
parallel.cores = 2)

A complete work flow:
Calculate second structure on Windows OS,
RNAfold.path <- '"E:/Program Files/ViennaRNA/RNAfold.exe"'
SS.seq <- run_RNAfold(Seqs, RNAfold.path = RNAfold.path, parallel.cores = 2)

Predict the sequences with secondary structure features,
result_2 <- lnc_finder(SS.seq, SS.features = TRUE, format = "SS",

frequencies.file = "mouse", svm.model = "mouse",
parallel.cores = 2)

Predict sequences with your own model by assigning a new svm.model and
frequencies.file to parameters "svm.model" and "frequencies.file"

End(Not run)

make_frequencies Make the frequencies file for new classifier construction

Description

This function is used to calculate the frequencies of lncRNAs, CDs, and secondary structure se-
quences. The frequencies file can be used to build the classifier using function extract_features.
Functions make_frequencies and extract_features are useful when users are trying to build
their own model.

NOTE: Function make_frequencies makes the frequencies file for building the classifiers of LncFinder
method. If users need to calculate Logarithm-Distance, Euclidean-Distance, and hexamer score, the
frequencies file need to be computed using function make_referFreq.

26 make_frequencies

Usage

make_frequencies(
cds.seq,
mRNA.seq,
lncRNA.seq,
SS.features = FALSE,
cds.format = "DNA",
lnc.format = "DNA",
check.cds = TRUE,
ignore.illegal = TRUE

)

Arguments

cds.seq Coding sequences (mRNA without UTRs). Can be a FASTA file loaded by
seqinr-package or secondary structure sequences (Dot-Bracket Notation) ob-
tained form function run_RNAfold. CDs are used to calculate hexamer frequen-
cies of nucleotide sequences,thus secondary structure is not needed. Parameter
cds.format should be "SS" when input is secondary structure sequences. (See
details for more information.)

mRNA.seq mRNA sequences with Dot-Bracket Notation. The secondary structure sequences
can be obtained from function run_RNAfold. mRNA sequences are used to cal-
culate the frequencies of acgu-ACGU and a acguD (see details), thus, mRNA
sequences are required only when SS.features = TRUE.

lncRNA.seq Long non-coding RNA sequences. Can be a FASTA file loaded by seqinr-package
or secondary structure sequences (Dot-Bracket Notation) obtained from function
run_RNAfold. If SS.features = TRUE, lncRNA.seq must be RNA sequences
with secondary structure sequences and parameter lnc.format should be de-
fined as "SS".

SS.features Logical. If SS.features = TRUE, frequencies of secondary structure will also
be calculated and the model can be built with secondary structure features. In
this case, mRNA.seq and lncRNA.seq should be secondary structure sequences.

cds.format String. Define the format of the sequences of cds.seq. Can be "DNA" or "SS".
"DNA" for DNA sequences and "SS" for secondary structure sequences.

lnc.format String. Define the format of lncRNAs (lncRNA.seq). Can be "DNA" or "SS".
"DNA" for DNA sequences and "SS" for secondary structure sequences. This
parameter must be defined as "SS" when SS.features = TURE.

check.cds Logical. Incomplete CDs can lead to a false shift and a inaccurate hexamer
frequencies. When check.cds = TRUE, hexamer frequencies will be calculated
on the longest ORF. This parameter is strongly recommended to set as TRUE
when mRNA is used as CDs.

ignore.illegal Logical. If TRUE, the sequences with non-nucleotide characters (nucleotide char-
acters: "a", "c", "g", "t") will be ignored when calculating hexamer frequencies.

make_frequencies 27

Details

This function is used to make frequencies file for LncFinder method. This file is needed when users
are trying to build their own model.

In order to achieve high accuracy, mRNA should not be regarded as CDs and assigned to parameter
cds.seq. However, CDs of some species may be insufficient for calculating frequencies, and mR-
NAs can be regarded as CDs with parameter check.cds = TRUE. In this case, hexamer frequencies
will be calculated on ORF region.

Considering that it is time consuming to obtain secondary structure sequences, users can only pro-
vide nucleotide sequences and build a model without secondary structure features (SS.features =
FALSE). If users want to build a model with secondary structure features, parameter SS.features
should be set as TRUE. At the same time, the format of the sequences of mRNA.seq and lnc.seq
should be secondary structure sequences (Dot-Bracket Notation). Secondary structure sequences
can be obtained by function run_RNAfold.

Please note that:

SS.features can improve the performance when the species of unevaluated sequences is identical to
the species of the sequences that used to build the model.

However, if users are trying to predict sequences with the model trained on other species, SS.features
may lead to low accuracy.

The frequencies file consists three groups: Hexamer Frequencies; acgu-ACGU Frequencies and
acguD Frequencies.

Hexamer Frequencies are calculated on the original nucleotide sequences by employing k-mer
scheme (k = 6), and the sliding window will slide 3 nt each step.

For any secondary structure sequences (Dot-Bracket Notation), if one position is a dot, the corre-
sponding nucleotide of the RNA sequence will be replaced with character "D". acguD Frequencies
are the k-mer frequencies (k = 4) calculated on this new sequences.

Similarly, for any secondary structure sequences (Dot-Bracket Notation), if one position is "(" or
")", the corresponding nucleotide of the RNA sequence will be replaced with upper case ("A", "C",
"G", "U").

A brief example,

DNA Sequence: 5'- t a c a g t t a t g -3'

RNA Sequence: 5'- u a c a g u u a u g -3'

Dot-Bracket Sequence: 5'- ((((((-3'

acguD Sequence: { D, D, D, D, g, u, u, a, u, g }

acgu-ACGU Sequence: { u, a, c, a, G, U, U, A, U, G }

Value

Returns a list which consists the frequencies of protein-coding sequences and non-coding sequences.

References

Siyu Han, Yanchun Liang, Qin Ma, Yangyi Xu, Yu Zhang, Wei Du, Cankun Wang & Ying Li.
LncFinder: an integrated platform for long non-coding RNA identification utilizing sequence intrin-
sic composition, structural information, and physicochemical property. Briefings in Bioinformatics,
2019, 20(6):2009-2027.

28 make_referFreq

Author(s)

HAN Siyu

See Also

run_RNAfold, read_SS, build_model, extract_features, make_referFreq.

Examples

Only for examples:
data(demo_DNA.seq)
Seqs <- demo_DNA.seq

Not run:
Obtain the secondary structure sequences (Windows OS):
RNAfold.path <- '"E:/Program Files/ViennaRNA/RNAfold.exe"'
SS.seq <- run_RNAfold(Seqs, RNAfold.path = RNAfold.path, parallel.cores = 2)

Make frequencies file with secondary strucutre features,
my_file_1 <- make_frequencies(cds.seq = SS.seq, mRNA.seq = SS.seq,

lncRNA.seq = SS.seq, SS.features = TRUE,
cds.format = "SS", lnc.format = "SS",
check.cds = TRUE, ignore.illegal = FALSE)

End(Not run)

Make frequencies file without secondary strucutre features,
my_file_2 <- make_frequencies(cds.seq = Seqs, lncRNA.seq = Seqs,

SS.features = FALSE, cds.format = "DNA",
lnc.format = "DNA", check.cds = TRUE,
ignore.illegal = FALSE)

The input of cds.seq and lncRNA.seq can also be secondary structure
sequences when SS.features = FALSE, such as,
data(demp_SS.seq)
SS.seq <- demo_SS.seq
my_file_3 <- make_frequencies(cds.seq = SS.seq, lncRNA.seq = Seqs,

SS.features = FALSE, cds.format = "SS",
lnc.format = "DNA", check.cds = TRUE,
ignore.illegal = FALSE)

make_referFreq Make Frequencies File for Log.Dist, Euc.Dist, and hexamer score

Description

This function is used to calculate the frequencies of lncRNAs and CDs. The Frequencies file can be
used to calculate Logarithm-Distance (compute_LogDistance), Euclidean-Distance (compute_EucDistance),
and hexamer score (compute_hexamerScore).

make_referFreq 29

NOTE: If users need to make frequencies file to build new LncFinder classifier using function
extract_features, please refer to function make_frequencies.

Usage

make_referFreq(
cds.seq,
lncRNA.seq,
k = 6,
step = 1,
alphabet = c("a", "c", "g", "t"),
on.orf = TRUE,
ignore.illegal = TRUE

)

Arguments

cds.seq Coding sequences (mRNA without UTRs). Can be a FASTA file loaded by
seqinr-package.

lncRNA.seq Long non-coding RNA sequences. Can be a FASTA file loaded by seqinr-package.

k An integer that indicates the sliding window size. (Default: 6)

step Integer defaulting to 1 for the window step.

alphabet A vector of single characters that specify the different character of the sequence.
(Default: alphabet = c("a", "c", "g", "t"))

on.orf Logical. Incomplete CDs can lead to a false shift and a inaccurate hexamer
frequencies. When on.orf = TRUE, the frequencies will be calculated on the
longest ORF. This parameter is strongly recommended to set as TRUE when
mRNA is used as CDs. Only available when alphabet = c("a", "c", "g",
"t"). (Default: TRUE)

ignore.illegal Logical. If TRUE, the sequences with non-nucleotide characters (nucleotide char-
acters: "a", "c", "g", "t") will be ignored when calculating the frequencies. Only
available when alphabet = c("a", "c", "g", "t"). (Default: TRUE)

Details

This function is used to make frequencies file for the computation of Logarithm-Distance (compute_LogDistance),
Euclidean-Distance (compute_EucDistance), and hexamer score (compute_hexamerScore).

In order to achieve high accuracy, mRNA should not be regarded as CDs and assigned to parameter
cds.seq. However, CDs of some species may be insufficient for calculating frequencies. In that
case, mRNAs can be regarded as CDs with parameter on.orf = TRUE, and the frequencies will be
calculated on ORF region. If on.orf = TRUE, users can set step = 3 to simulate the translation
process.

Value

Returns a list which consists the frequencies of protein-coding sequences and non-coding sequences.

30 read_SS

References

Siyu Han, Yanchun Liang, Qin Ma, Yangyi Xu, Yu Zhang, Wei Du, Cankun Wang & Ying Li.
LncFinder: an integrated platform for long non-coding RNA identification utilizing sequence intrin-
sic composition, structural information, and physicochemical property. Briefings in Bioinformatics,
2019, 20(6):2009-2027.

Author(s)

HAN Siyu

See Also

make_frequencies, compute_LogDistance, compute_EucDistance, compute_hexamerScore.

Examples

Not run:
Seqs <- seqinr::read.fasta(file =
"http://www.ncbi.nlm.nih.gov/WebSub/html/help/sample_files/nucleotide-sample.txt")

referFreq <- make_referFreq(cds.seq = Seqs, lncRNA.seq = Seqs, k = 6, step = 1,
alphabet = c("a", "c", "g", "t"), on.orf = TRUE,
ignore.illegal = TRUE)

End(Not run)

read_SS Read Secondary Structure Information

Description

This function can read secondary structure information from your own file instead of obtaining from
function run_RNAfold. This function will be useful if users have had secondary structure sequences
(Dot-Bracket Notation).

Usage

read_SS(
oneFile.loc,
seqRNA.loc,
seqSS.loc,
separateFile = TRUE,
withMFE = TRUE

)

read_SS 31

Arguments

oneFile.loc String. The location of your sequence file. This file should contains one (and
only one) RNA sequence and its secondary structure sequence in Dot-Bracket
Notation. This parameter needs to be defined only when separateFile = FALSE.
See Details for more information.

seqRNA.loc String. The location of your RNA sequences file (FASTA format). If your RNA
sequences and secondary structure sequences are in two files, you need to define
the locations of two files respectively. And the files with multiple sequences
are supported for this option. This parameter needs to be defined only when
separateFile is TRUE. Location of secondary structure sequences file is also
needed (parameter seqSS.loc). See Details for more information.

seqSS.loc String. The location of your secondary structure sequences file (FASTA format).

separateFile Logical. Your RNA sequence(s) and secondary structure sequence(s) are in sep-
arate files? If separateFile = FALSE, your file should have one (and only one)
RNA sequence and its secondary structure sequence. No limit when separateFile
= TRUE.

withMFE Logical. Whether MFE is provided at the end of secondary structure sequence.
If withMFE = TRUE, MFE will be extracted. The format should be in accordance
with the output format of RNAfold.

Details

When users want to predict sequences with secondary structure features, users may have had their
own secondary structure sequences. With this function, users can read SS information from their
files. Two kind of files are supported: RNA sequence and SS sequence in one file separateFile is
FALSE or in separate files separateFile = TRUE.

separateFile = FALSE is used for secondary structure that obtained from some popular programs,
such as RNAfold. In this case, the output file only contains one RNA sequence and its SS. Besides,
this file only have two rows: RNA sequence and its SS sequences. Thus, this option is more
favorable when the file only have one sequence and the sequence are in accordance with the output
format of RNAfold.

If users obtained the SS sequence from experiments, RNA sequence and SS sequence may be in
two files. In this case, users can select separateFile = TRUE. Two files should be in FASTA format
and one file can have multiple sequences. The sequences in two files should have the same order.
If your data are obtained from experiments or other sources, it is highly recommended that users
should build new model with this data, since the SS sequences of pre-built model are obtained for
RNAfold and may have many differences with experimental data.

Value

A dataframe. The first row is RNA sequence, the second row is Dot-Bracket Notation of secondary
structure sequence, the third row is MFE (if MFE is provided).

Author(s)

HAN Siyu

32 run_RNAfold

See Also

run_RNAfold

Examples

Not run:
Load sequence data
data("demo_DNA.seq")
Seqs <- demo_DNA.seq[1:4]
Convert sequences from vector to string.
Seqs <- sapply(Seqs, seqinr::getSequence, as.string = TRUE)
Write a fasta file.
seqinr::write.fasta(Seqs, names = names(Seqs), file.out = "tmp.RNA.fa", as.string = TRUE)

For Windows system: (Your path of RNAfold.)
RNAfold.path <- '"E:/Program Files/ViennaRNA/RNAfold.exe"'
Define the parameters of RNAfold. See documents of RNAfold for more information.
RNAfold.command <- paste(RNAfold.path, " --noPS -i tmp.RNA.fa -o output", sep = "")
Run RNAfold and output four result files.
system(RNAfold.command)

Read secondary structure information for one file.
result_1 <- read_SS(oneFile.loc = "output_ENST00000510062.1.fold",

separateFile = FALSE, withMFE = TRUE)
Read secondary sturcture sequences for multiple files.
filePath <- dir(pattern = ".fold")
result_2 <- sapply(filePath, read_SS, separateFile = FALSE, withMFE = TRUE)
result_2 <- as.data.frame(result_2)

End(Not run)

run_RNAfold Obtain the Secondary Structure Sequences Using RNAfold

Description

This function can compute secondary structure sequences. The tool "RNAfold" of software "Vien-
naRNA" is required for this function.

Usage

run_RNAfold(Sequences, RNAfold.path = "RNAfold", parallel.cores = 2)

Arguments

Sequences A FASTA file loaded by function read.fasta of seqinr-package.

RNAfold.path String. Indicate the path of the program "RNAfold". By default is "RNAfold"
for UNIX/Linux system. (See details.)

run_RNAfold 33

parallel.cores Integer. The number of cores for parallel computation. By default the number
of cores is 2, users can set as -1 to run this function with all cores.

Details

This function is used to compute secondary structure. The output of this function can be used in
function make_frequencies, extract_features, build_model and lnc_finder when parameter
SS.features is set as TRUE.

This function depends on the program "RNAfold" of software "ViennaRNA". (http://www.tbi.
univie.ac.at/RNA/index.html)

Parameter RNAfold.path can be simply defined as "RNAfold" as default when the OS is UNIX/Linux.
However, for some OS, such as Windows, users need to specify the RNAfold.path if the path of
"RNAfold" haven’t been added in environment variables.

This function can print the related information when the OS is UNIX/Linux, such as:

"25 of 100, length: 695 nt",

which means around 100 sequences are assigned to this node and the program is computing the
25th sequence. The length of this sequence is 695nt.

If users have their own SS data, users can use function read_SS to load them, instead of obtaining
from RNAfold.

Value

Returns data.frame. The first row is RNA sequence; the second row is Dot-Bracket Notation of
secondary structure sequences; the last row is minimum free energy (MFE).

Author(s)

HAN Siyu

See Also

read_SS

Examples

Not run:
For a FASTA file contains several sequences,
Use "read.fasta" function of package "seqinr" to read a FASTA file:
Seqs <- read.fasta(file =
"http://www.ncbi.nlm.nih.gov/WebSub/html/help/sample_files/nucleotide-sample.txt")

Or just try to use our data "demo_DNA.seq"
data(demo_DNA.seq)
Seqs <- demo_DNA.seq

Windows:
RNAfold.path <- '"E:/Program Files/ViennaRNA/RNAfold.exe"'
SS.seq_1 <- run_RNAfold(Seqs[1:2], RNAfold.path = RNAfold.path, parallel.cores = 2)

http://www.tbi.univie.ac.at/RNA/index.html
http://www.tbi.univie.ac.at/RNA/index.html

34 svm_cv

For UNIX/Linux, "RNAfold.path" can be just defined as "RNAfold" as default:
SS.seq_2 <- run_RNAfold(Seqs, RNAfold.path = "RNAfold", parallel.cores = 2)

End(Not run)

svm_cv k-fold Cross Validation for SVM

Description

This function conduct k-fold Cross Validation for SVM.

Usage

svm_cv(
dataset,
label.col = 1,
positive.class = NULL,
folds.num = 10,
seed = 1,
parallel.cores = 2,
...

)

Arguments

dataset The dataset obtained from function extract_features. Or datasets used to
build the classifier.

label.col integer specifying the column number of the label. (Default: 1)
positive.class Character. Indicate the positive class of the dataset. (Default: NonCoding) The

value of this parameter should be identical to one of the classes of the response
vectors.

folds.num Integer. Specify the number of folds for cross-validation. (Default: 10)
seed Integer. Used to set the seed for cross-validation. (Default: 1)
parallel.cores Integer. The number of cores for parallel computation. By default the number

of cores is 2, users can set as -1 to run this function with all cores. If the
number of parallel.cores is more than the folds.num (number of the folds
for cross-validation), the number of parallel.cores will be set as folds.num
automatically.

... additional parameters for function svm.

Details

During the model tuning, the performance of each combination of parameters will output. Sensitiv-
ity, Specificity, Accuracy, F-Measure and Kappa Value are used to evaluate the performances. The
best gamma and cost (or best model) are selected based on Accuracy.
For the details of parameter gamma and cost, please refer to function svm of package "e1071".
For the details of metrics, please refer to function confusionMatrix of package "caret".

svm_tune 35

Value

Returns the optimal parameters when return.model = FALSE. Or returns the best model when
return.model = TRUE.

Author(s)

HAN Siyu

See Also

extract_features, svm_tune.

Examples

Not run:
data(demo_dataset)
my_dataset <- demo_dataset

cv_res <- svm_cv(my_dataset, folds.num = 4, seed = 1,
parallel.core = 2, cost = 3, kernel = "radial", gamma = 0.5)

Users can set return.model = TRUE to return the best model.

End(Not run)

svm_tune Parameter Tuning of SVM

Description

This function conduct the parameter tuning of SVM. Parameters gamma and cost can be tuned using
grid search.

Usage

svm_tune(
dataset,
label.col = 1,
positive.class = "NonCoding",
folds.num = 10,
seed = 1,
gamma.range = (2^seq(-5, 0, 1)),
cost.range = c(1, 4, 8, 16, 24, 32),
return.model = TRUE,
parallel.cores = 2,
...

)

36 svm_tune

Arguments

dataset The dataset obtained from function extract_features. Or datasets used to
build the classifier.

label.col integer specifying the column number of the label. (Default: 1)

positive.class Character. Indicate the positive class of the dataset. (Default: NonCoding) The
value of this parameter should be identical to one of the classes of the response
vectors.

folds.num Integer. Specify the number of folds for cross-validation. (Default: 10)

seed Integer. Used to set the seed for cross-validation. (Default: 1)

gamma.range The range of gamma. (Default: 2 ^ seq(-5, 0, 1))

cost.range The range of cost. (Default: c(1, 4, 8, 16, 24, 32))

return.model Logical. If TRUE, the function will return the best model trained on the full
dataset. If FALSE, this function will return the optimal parameters.

parallel.cores Integer. The number of cores for parallel computation. By default the number
of cores is 2, users can set as -1 to run this function with all cores. If the
number of parallel.cores is more than the folds.num (number of the folds
for cross-validation), the number of parallel.cores will be set as folds.num
automatically.

... Additional arguments for function svm, except scale, probability, kernel,
gamma and cost.

Details

During the model tuning, the performance of each combination of parameters will output. Sensitiv-
ity, Specificity, Accuracy, F-Measure and Kappa Value are used to evaluate the performances. The
best gamma and cost (or best model) are selected based on Accuracy.

For the details of parameter gamma and cost, please refer to function svm of package "e1071".

For the details of metrics, please refer to function confusionMatrix of package "caret".

Value

Returns the optimal parameters when return.model = FALSE. Or returns the best model when
return.model = TRUE.

Author(s)

HAN Siyu

See Also

extract_features, svm_cv.

svm_tune 37

Examples

Not run:
data(demo_DNA.seq)
Seqs <- demo_DNA.seq

positive_data <- extract_features(Seqs[1:5], label = "NonCoding",
SS.features = FALSE, format = "DNA",
frequencies.file = "human",
parallel.cores = 2)

negative_data <- extract_features(Seqs[6:10], label = "Coding",
SS.features = FALSE, format = "DNA",
frequencies.file = "human",
parallel.cores = 2)

my_dataset <- rbind(positive_data, negative_data)

Or use our data "demo_dataset"
data(demo_dataset)
my_dataset <- demo_dataset

optimal_parameter <- svm_tune(my_dataset, positive.class = "NonCoding",
folds.num = 2, seed = 1,
gamma.range = (2 ^ seq(-5, 0, 2)),
cost.range = c(1, 8, 16),
return.model = FALSE, parallel.core = 2)

Users can set return.model = TRUE to return the best model.

End(Not run)

Index

build_model, 2, 20, 22, 24, 25, 28, 33

compute_EIIP, 4
compute_EucDistance, 6, 12, 16, 28–30
compute_FickettScore, 8
compute_GC, 10
compute_hexamerScore, 7, 11, 16, 28–30
compute_kmer, 13
compute_LogDistance, 7, 12, 14, 28–30
compute_pI, 16
computePI, 16
confusionMatrix, 34, 36

demo_dataset, 18
demo_DNA.seq, 19
demo_SS.seq, 19

extract_features, 3, 4, 6, 20, 24, 25, 28, 29,
33–36

find_orfs, 22

GC, 10

lnc_finder, 3, 4, 23, 33

make_frequencies, 3, 4, 20, 22, 24, 25, 25,
30, 33

make_referFreq, 6, 7, 11, 12, 15, 16, 25, 28,
28

read.fasta, 3, 5, 6, 8, 10, 11, 13, 15, 17, 19,
32

read_SS, 22, 25, 28, 30, 33
run_RNAfold, 3, 20–22, 24–28, 30, 32, 32

svm, 4, 34, 36
svm_cv, 34, 36
svm_tune, 3, 4, 22, 24, 35, 35

38

	build_model
	compute_EIIP
	compute_EucDistance
	compute_FickettScore
	compute_GC
	compute_hexamerScore
	compute_kmer
	compute_LogDistance
	compute_pI
	demo_dataset
	demo_DNA.seq
	demo_SS.seq
	extract_features
	find_orfs
	lnc_finder
	make_frequencies
	make_referFreq
	read_SS
	run_RNAfold
	svm_cv
	svm_tune
	Index

